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SUMMARY

Improving the tribological functionality of diamondlike carbon (DLC) films--developing good wear resistance,

low friction, and high load-carrying capacity--was the aim of this investigation. Nancx:omposite coatings consisting

of an amorphous DLC (a-DLC) top layer and a functionally graded titanium-titanium carbon-diamondlike carbon

(Ti-TixCy-DLC) underlayer were produced on AISI 440C stainless steel substrates by the hybrid technique of mag-
netron sputtering and pulsed-laser deposition. The resultant DLC films were characterized by Raman spectroscopy,

scanning electron microscopy, and surface profilometry. Two types of wear experiment were conducted in this in-

vestigation: sliding friction experiments and fretting wear experiments. Unidirectional ball-on-disk sliding friction

experiments were conducted to examine the wear behavior of an a-DLC/Ti-TixCy-DLC-coated AISI 440C stainless
steel disk in sliding contact with a 6-mm-diameter AISI 440C stainless steel ball in ultrahigh vacuum, dry nitrogen,

and humid air. Although the wear rates for both the coating and ball were low in all three environments, the humid

air and dry nitrogen caused mild wear with burnishing in the a-DLC top layer, and the ultrahigh vacuum caused

relatively severe wear with brittle fracture in both the a-DLC top layer and the Ti-TixCy-DLC underlayer. For refer-

ence, amorphous hydrogenated carbon (H-DLC) films produced on a-DLC/Ti-TixCy-DLC nanocomposite coatings

by using an ion beam were also examined in the same manner. The H-DLC films markedly reduced friction even in
ultrahigh vacuum without sacrificing wear resistance. The H-DLC films behaved much like the a-DLC/Ti-Ti x

Cy-DLC nanocomposite coating in dry nitrogen and humid air, presenting low friction and low wear. Fretting wear
experiments were conducted in humid air (~50 percent relative humidity) at a frequency of 80 Hz and an amplitude

of 75 I.tm on an a-DLC/'Ti-TixCy-DLC-coated AISI 440C disk and on a titanium-6 wt% aluminum-4 wt% vanadium
(Ti-6A1-4V) flat, both in contact with a 9.4-mm-diameter, hemispherical Ti-6AI-4V pin. The resistance to fretting

wear and damage of the a-DLC/Ti-6A1-4V materials pair was superior to that of the Ti-6AI-4V/Ti-6AI-4V materials

pair.

INTRODUCTION

The nature of the substrate and its predeposition treatment play a major role in determining the load-carrying

capacity and wear resistance of diamondlike carbon (DLC) coatings in tribological applications. Especially when the
DLC coatings are applied to relatively soft substrates, such as steels, the brittle nature and high internal compressive

stresses (1 to 2 GPa) of DLC may limit the applications to light loads. In other words, the maximum load that such a

sliding or rolling contact system can support without failure or wear exceeding the design limits for the particular

application is low. Therelbre, the synergistic characteristics of amorphous DLC (a-DLC), such as bending strength,

shear strength, elasticity, and hardness, as well as adhesion of DLC to its substrate in DLC-substrate systems, must

be improved through methods such as the use of multilayer DLC coatings (refs. 1 to 8) and compositional modifica-

tion of DLC (refs. 9 to 14).
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In a previous study by Voevodin et al. (ref. 1) several design concepts, including titanium-titanium carbon-

diamondlike carbon (Ti-TixCy-DLC) functionally graded nanocomposite coatings, were developed to increase the
fracture toughness of DLC-based coatings while preserving the superhardness (60 to 70 GPa) of DLC. The study

demonstrated how the potential of superhard DLC coatings for wear protection can be multiplied by the develop-

ment of functionally graded nanocomposite designs.

In this present investigation two types of wear experiment were conducted to examine the sliding wear and fret-

ting wear properties of anaorphous DLC-based lhnctionally graded nanocomposite (a-DLC/Ti-TixCy-DLC) coatings.
First, unidirectional ball-on-disk sliding friction experiments were conducted to examine the wear behavior of an

a-DLC/Ti-TixCy-DLC-coated AISI 440C stainless steel disk in sliding contact with a 6-mm-diameter AISI 440(2
stainless steel ball at room temperature in ultrahigh vacuum (7×10 -7 to 2×10 _6 Pa), in dry nitrogen (<1% relative

humidity), and in humid air (~50 percent relative humidity). For reference, amorphous hydrogenated carbon

(H-DLC) films deposited on a-DLC/Ti-TixCy-DLC coatings were also examined in the same manner. Second, fret-
ting wear experiments were conducted to examine the fretting wear behavior of an a-DLC/Ti-TixCy-DLC-coated flat
and a titanium-6 wtC_ aluminum-4 wt% vanadium (Ti-6AI-4V) fiat, both in contact with a 9.4-mm-diameter, hemi-

spherical Ti-6AI-4V pin at room temperature in humid air (-50 percent relative humidity).

The a-DLC/Ti-TixCy-DLC nanocomposite coatings, consisting of an a-DLC top layer and a functionally graded

Ti-TixCy-DLC underlayer, were produced on AISI 440C stainless steel substrates by the hybrid technique of magne-
tron sputtering and pulsed-laser deposition. The H-DLC films were produced on a-DLC/Ti-Ti×Cy-DLC functionally
graded nanocomposite coatings by the impact of an ion beam (composed of a mixture of methane (CH4) and argon

(Ar) or oxygen (02)) at an ion energy of 1500 or 300 eV.
The resultant a-DLC- and H-DLC-based, functionally graded, nanocomposite coatings and their wear surfaces

were characterized by Raman spectroscopy, scanning electron microscopy (SEM), energy-dispersive x-ray spectros-

copy (EDX), and surface profilometry. Raman spectroscopy was used to characterize the carbon bonding and the

chemical structure. SEM and EDX were used to determine the morphology and elemental composition of wear sur-

faces and wear debris. The sampling depth of EDX for elemental information ranged between 0.5 and I mm in this

investigation. Surface profilometry was used to determine the surface morphology, roughness, and wear of the

coatings.

MATERIALS

Figure 1(a), a schematic diagram of the a-DLC/Ti-TixCy-DLC functionally graded nanocomposite coating, also
shows the composition and properties of the coating layers. Voevodin et al. (ref. 15) provides detailed analyses of

the gradations of compositional, structural, and mechanical properties in the graded coating. The coating composi-

tion varied from titanium to a-DLC through an intermediate TixCy ceramic region, and the hardness generally
increased gradually from the AISI 440C stainless steel substrate to the a-DLC, preventing sharp changes in chemis-

try, structure, and mechanical properties.

The a-DLC/Ti-TixCy-DLC multilayer coatings were prepared with a hybrid technology called magnetron-
sputter-assisted, pulsed-laser deposition (MSPLD) (ref. 16). Fluxes of energetic carbon from pulsed-laser deposition

and titanium atoms from magnetron sputtering were intersected on the substrate surface. The individual fluxes were

controlled independently to achieve a preprogrammed variation of the composition and structure across the coating

thickness. Laser beam scanning and specimen positioning ensured a uniform coating without compositional varia-

tions in directions parallel to the substrate surface. All depositions were performed with substrate temperatures of

100 °C. The substrates were AISI 440C stainless steel disks (3 mm thick, 25 mm in diameter) heat treated to the

Vickers microhardness of 7 to 8 GPa and polished to below 0.1-_m centerline-average roughness (Ru). They were
etched with I keV argon ions lk_r 30 min prior to deposition. The functionally graded nanocomposite coating com-

prised an -0.5-lam-thick DLC layer on a 0.45-p.m-thick graded Ti-TixCy-DLC underlayer. Six specimens of a-DLC/

Ti-TixCy-DLC functionally graded nanocomposite coatings deposited on AISI 440(2 stainless steel disk substrates
were used in this investigation. Their surfaces were smooth and their centerline-average roughness (Ra), measured
by using a cutoff of 1 ram, was 19 nm with a standard deviation of 5 nm.

Figure I(b) is a schematic diagram of an H-DLC film deposited on an a-DLC/Ti-TixCy-DLC functionally
graded nanocomposite underlayer. The H-DLC films (ref. ! 7) were produced on the underlayer by the impact of an

ion beam composed of a 3:17 mixture of Ar and CH 4 at an ion energy of 1500 eV, a 1: 17 mixture of 02 and CH 4 at

an ion energy of 1500 eV. and a 2:17 mixture of O 2 and CH 4 at an ion energy of 300 eV (table I). The H-DLC film
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thicknessandcenterline-averageroughness(Ra),measuredbyusingacutoffof I mm,aswellasthe radiofrequency

power used are also presented in table I. The H-DLC films contained more than 30 percent hydrogen (ref. 18).

Figure 2 presents typical Raman spectra of an a-DLC/Ti-TixCy-DLC functionally graded nanocomposite coat-

ing and an H-DLC film deposited on the a-DLC/Ti-TixCy-DLC coating. The two Raman spectra are similar and
indicate the presence of amorphous nondiamond carbon both in the a-DLC top layer and in the H-DLC film, but the

characteristic sp3-bonded diamond peak is absent. The two spectra show that sp2-bonded graphitic amorphous car-

bon was prevalent in both the a-DLC and H-DLC.

The polished Ti-6AI-4V llats were smooth; the mean Ru, measured by using a cutoff of 0.8 mm, was 7.3 nm
with a standard deviation of 0.94 nm. The surfaces of the 6-mm-diameter AISI 440C stainless steel balls (grade 10)

were smooth (mean R a, 25 nm). The polished surfaces of the 9.4-ram-diameter hemispherical Ti-6AI-4V pins were

also smooth (mean R a, 110 nm).

EXPERIMENTS

Unidirectional ball-on-disk sliding friction experiments were conducted in ultrahigh vacuum (7x10 -7 to

2x10 _° Pa), in dry nitrogen (<1 percent relative humidity), and in humid air (~50 percent relative humidity) at 23 °C

(table II). All sliding experiments were conducted with a load of 0.98 N at a constant rotating speed of 120 rev/min

(the sliding velocity ranged from 31 to 107 mm/s because of the wear track radii involved in the experiments). The

friction-and-wear apparatus used in the investigation (fig. 3(a)) was mounted in a vacuum chamber. The apparatus

can measure friction in ultrahigh vacuum, in dry nitrogen, and in humid air during sliding. Wear was quantified by

measuring the size of the wear scar and wear track on each specimen after the wear experiment. All sliding experi-
ments were conducted with 6-mm-diameter AISI 440C stainless steel balls in sliding contact with a-DLC/Ti-Ti x

Cy-DLC functionally graded nanocomposite coatings deposited on AISI 440C stainless steel substrate disks and
with H-DLC films deposited on the a-DLC/Ti-TixCv-DLC coatings. The initial mean Hertzian contact pressure was
-0.6 GPa. The friction force was continuously monitored during the experiments. Coating wear volumes were ob-

tained by measuring the average cross-sectional area, determined from stylus tracings, across the wear tracks at a

minimum of eight locations in each wear track. Then, the average cross-sectional area of the wear track was multi-

plied by the wear track length. The wear rate, known as the dimensional wear coefficient, is defined as the volume
of material removed at a unit load and in a unit sliding distance expressed as cubic millimeters/newton-meter.

Fretting wear experiments were conducted in humid air (~50 percent relative humidity) at 23 °C (table II). All

fretting wear experiments were conducted with a load of 1.47 N at a constant frequency orS0 Hz with an amplitude

of 75 I-tin for a total of 5(_ 000 cycles. The fretting wear apparatus used in the investigation (fig. 3(b)) was mounted
in a closed chamber. All fretting wear experiments were conducted with 9.5-mm-diameter hemispherical Ti-6AI-4V

pins in contact with Ti-6A1-4V flats and in contact with a-DLC/Ti-TixCy-DLC functionally graded nanocomposite
coatings deposited on AISI 44(KS stainless steel substrate disks. The initial mean Hertzian contact pressures were

-0.25 and 0.35 GPa, respectively.

RESULTS AND DISCUSSION

Sliding Friction and Wear of a-DLC and H-DLC

Friction behavior.--Figure 4 presents typical friction traces obtained in ultrahigh vacuum, in dry nitrogen, and

in humid air for a-DLC/Ti-TixCy-DLC functionally graded nanocomposite coatings and for H-DLC films deposited
on these coatings, both in sliding contact with AISI 440C stainless steel balls, as a function of the number of passes
to 10 000. The friction traces indicate the marked difference in friction due to the environmental conditions and the

materials pairs.
With the a-DLC (fig. 4(a)) the mean coefficients of friction obtained in ultrahigh vacuum were higher than

those obtained in dry nitrogen and in humid air by factors of 3 to 10. Also, the irregularities in the friction traces

were much greater in ultrahigh vacuum than in dry nitrogen and humid air. The steady-state coefficients of friction

obtained in dry nitrogen after 3000 passes were slightly higher than those obtained in humid air. With a-DLC

(amorphous carbon), as with graphite, the water vapor in humid air can reduce friction.
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WiththeH-DLC(fig.4(b))themeancoefficientsoffrictionobtainedinultrahighvacuumafter-500passes
werehigherthanthoseobtainedindrynitrogenandinhumidairbyfactorsof2to17.Also,theirregularitiesin the
frictiontracesweremuchgreaterinultrahighvacuumthanindrynitrogenandhumidair.Thehighfrictionandits
variationsresultedfromhighadhesion.Thecoefficientsoffrictionobtainedinhumidairto10000passeswere
muchhigherthanthoseobtainedindrynitrogen.WiththeH-DLCfrictionrosewiththepresenceof watervaporin
humidair,oppositetotheeffectofwatervaporona-DLC'sfriction.

Figure5presentsfrictiontracesobtainedinultrahighvacuumforana-DLC/Ti-TixCy-DLCfunctionallygraded
nanocompositecoatingandfbranH-DLCfilmdepositedonthiscoating,bothinslidingcontactwithAISI440C
stainlesssteelballs,asafunctionofthenumberofpassesto1000and670passes,respectively.Thecoefficientsof
frictionwerelowerfortheH-DLCthanforthea-DLCbyafactorof6.Themeansteady-statecoefficientoffriction
fortheH-DLCwasrelativelylow,-0.1from60to630passes.Thea-DLChadahighcoefficientoffriction,~0.6to
I(X)0passes.Alter630passesthecoefficientoffrictionfortheH-DLCincreasedto0.3at670passesbecausethe
H-DLCfilmwaslocallyremovedandthea-DLC/Ti-TixCy-DLCunderlayerwaslocallypresentontheweartrack.
Thus,amorphoushydrogenatedcarbon(H-DLCora-C:H)markedlyreducedfrictioninultrahighvacuum.

Wear behavior.--The wear of a-DLC/Ti-TixCy-DLC functionally graded nanocomposite coatings in sliding
contact with an AISI 440C stainless steel ball was markedly different in the different environments (ref. 19). The

wear behavior of H-DLC films deposited on a-DLC/Ti-TixCy-DLC coatings was analogous to that of a-DLC/Ti-
TixC -DLC.

)_Vith the materials pair of a-DLC/Ti-TixCy-DLC coating and AISI 440C stainless steel ball, the ultrahigh vacu-
um caused relatively mild wear with burnishing in the a-DLC top layer to -1200 passes. The a-DLC top layers had a
mean wear rate of 4.2× 10-6 mm3/N-m and a coefficient of friction of 0.56 under the relatively mild wear condition

(fig. 6(a)). The wear rate of the counterpart material, the AISI 440C stainless steel ball, to 1200 passes was on the
order of 10 -7 mm3/N-m (fig. 6(b)). The a-DLC layer started to delaminate at -1200 passes. This number is the criti-

cal number of passes to delaminate the a-DLC top layer and corresponds to the wear life of the top layer sliding

against the AISI 440C stainless steel. After ~ 1200 passes the ultra-high-vacuum environment caused relatively

severe wear with brittle fracture in both the a-DLC top layer and the Ti-TixCy-DLC underlayer, and both the
coating wear rate and the coefficient of friction increased (ref. 19). Fracturing, delamination, and fragmentation of

the a-DLC top layer and the Ti-TixCy-DLC underlayer took place during this relatively severe wear proccss in ultra-
high vacuum. After 4400 to 6500 passes the a-DLC top layer was almost completely removed from the wear track,

and sliding contact between the Ti-TixCy-DLC underlayer and the AISI 440C stainless steel ball occurred. To
I0 000 passes under this relatively severe wear condition, the coating wear rate and coefficient of friction were
3.0×10 -5 mm3/N-m and 0.92, respectively (fig. 6(a)), and the ball wear rate was 1.2×10 -6 mm3/N-m (fig. 6(b)).

The dry-nitrogen and humid-air environments caused mild wear with burnishing in the a-DLC top layer. The

a-DLC top layer was present in the entire track even at 550 000 sliding passes, providing a low coefficient of fric-

tion, low coating wear rate, and low ball wear rate.

H-DLC films deposited on a-DLC/Ti-TixCy-DLC nanocomposite coatings behaved much like the a-DLC/Ti-

TixCy-DLC. To a critical number of passes (-600), corresponding to the wear life of the H-DLC film, the ultra-
high-vacuum environment caused relatively mild wear with burnishing in the H-DLC film. Alter the critical number

of passes the ultra-high-vacuum environment caused relatively severe wear with brittle fracture in both the H-DLC

fihn and the a-DLC/Ti-TixC. -DLC underlayer. In ultrahigh vacuum the H-DLC film wear rates and coefficients of
friction were 9. lxl0 -7 mm3]_q-m and 0. I and Ixl0 -6 mm3/N-m and 0.3 to 600 and 10 0_X) passes, respectively

(fig. 6(a)). and the ball wear rates were 8xl0 -7 and 4.7x10 -6 mm3/N-m to 600 and 10 000 passes, respectively

(fig. 6(b)).

The dry-nitrogen and humid-air environments caused mild wear with burnishing in the H-DLC film. The

H-DLC film was present in the entire track even at 550 000 sliding passes in both environments, providing a low

coefficient of friction, low coating wear rate, and low ball wear rate (fig. 6).

Fretting Wear of a-DLC

On the metal surfaces of the hemispherical Ti-6AI-4V pins and the Ti-6AI-4V flats fretted in air at 50 percent

rclativc humidity, the damage consisted of pits filled with loose oxide debris, smeared debris, and agglomerated

wear debris (fig. 7). In contrast, the materials pair of Ti-6AI-4V pin and a-DLC/Ti-TixCy-DLC-coated AISI 440C
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diskhadremarkablydifferentfrettingscars(fig.8).TheSEMphotomicrographspresentedin figures7and8clearly
indicatethemarkeddifferenceinfrettingdamageresultingfromthedifferentmaterialspairs.

Thesizeofthefrettingwearscars(fig.9),thedegreeofsurfaceroughnessdevelopedinthepits+andthedebris
producedwereallmuchlessforthematerialspairofTi-6A1-4Vanda-DLCthanforthematerialspairofTi-6AI-4V
andTi-6AI-4V.Thea-DLCcoatingremarkablyreducedtheareaofsurfacefrettingdamage--byafactorof 18for
thepinandbyafactorof I 1tottheflat.

Thesurfaceroughnessin thesurface-damagedareaoftheTi-6AI-4VflataftercontactwiththeTi-6AI-4Vpin
(fig.10(a))was51timesgreaterthanthatofthenot-fretted,polishedarea.But,thesurfaceroughnessinthefretting
scarof thea-DLCflataftercontactwiththeTi-6AI-4Vpin(fig.10(a))wasalmostthesameorderofmagnitudeas
thesurfaceroughnessofthenot-fretted,as-depositedcoatingsurface.Themeanvalueofmaximumfrettingscar
depthintheTi-6AI-4VflatsincontactwiththeTi-6A1-4Vpinswas28timesgreaterthanthatin the
a-DLCflatsincontactwithTi-6AI-4Vpins(fig.10(b)).

CONCLUDINGREMARKS

Thefrictionandwearofa-DLC/Ti-TixCy-DLCfunctionallygradednanocompositecoatingsdifferedmarkedly
fordifferentenvironmentalconditionsandmaterialspairs.Thehumid-airanddry-nitrogenenvironmentscaused
mildwearwithburnishinginthea-DLCtoplayer,buttheultra-high-vacuumenvironmentcausedrelativelysevere
wearwithbrittlefractureinboththea-DLCtoplayerandtheTi-TixCy-DLCunderlayer.Thehumid-airanddry-
nitrogenenvironmentsprovidedapreferableleveloflowcoefficientoffriction,lowwearrateofthea-DLCtop
layer,andlowwearrateoftheAISI440Cstainlesssteelball(counterpartmaterial).

Hydrogenatedcarbon(H-DLC)markedlyreducedfrictioninultrahighvacuum.H-DLCfilmsdepositedon
a-DLC/Ti-TixCy-DLCnanocompositecoatingsbehavedmuchlikethea-DLC/Ti-TixCy-DLCcoatingsindrynitro-
genandinhumidair,providinglowcoefficientoffriction,lowcoatingwearrate,andlowballwearrate.

A markeddifferenceinfrettingdamageresultedwithdifferentmateria[spairs:thematerialspairofa-DLC/Ti-
TixC.-DLC-coatedAISI440CstainlesssteeldiskandAISI440CStainlesssteelballwassuperiorinfrettingwear
anddamage resistance to the materials pair of Ti-6AI-4V and itself. The a-DLC/Ti-TixCy-DLC functionally graded

coating remarkably reduced the fretting damage on the surfaces of both a-DLC and AISI 440(? stainless steel.
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TABLE I.--DEPOSITION CONDITIONS, THICKNESS. AND SURFACE

ROUGHNESS OF H-DLC FILMS DEPOSITED ON a-DLC/Ti-TixCy-DLC
COATINGS BY DIRECT IMPACT OF ION BEAM

IRoom tern ,erature.]

Gas mixture Ion energy,
eV

Ar (3) CH_ (17) 1500

O._( I ) CH4(17) 1500

02(2) CH_(17) 300

Radio- Thickness,

frequency nm

power.
W

91 800

79 400

79 26t)

Surface roughness.

R a,

nln

Mean Standard

deviation

10 1.7

22 5.4

35 6.7

TABLE II.--CONDITIONS FOR SLIDING WEAR AND FRETTING WEAR EXPERIMENTS

Condition

Enviromnent

Substrate

Coating

Flat

Counterpart material

Unidirectional. pin-on-disk, rotating

slidin_ friction experiments

Humid air (~50 percent relative

humidity (RH))

Dry nitrogen (< I percent RH)

Ultrahigh vacuum (7× 10 -7 to 2× ]0 -6 Pa)

Rotatin_ speed, rpm

Slidin_ velocity,, mm/s

Frequency,. Hz

Amplitude. lain

Total number of cycles

AISI 440C stainless steel disk

a-DLC/Ti- TixC y-DLC

H-DLC/a-DLC/Ti-Ti xC_-DLC
.....................

6-mm-diameter AISI 440C stainless steel

ball (_rade 10)

Fretting wear experiments

Humid air (50 percent RH)

AISI 440C stainless steel disk

a-DLC/Ti- TixC y-DLC

Ti-6AI-4V fiat

9.4-ram-diameter hemispherical Ti-6AI-4V
)in

Load. N 0.98 !1.57
i

Contact pressure, GPa 0.6 !0.25 for Ti-6AI-4V on Ti-6AI-4V

0.35 for Ti-6AI-4V on a-DLC coatin_
120 .....................

31 to 107 .....................

..................... 80

..................... 75

.................... !50_) 000
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Material Hardness, Elastic modulus, Thickness,
GPa GPa nm

DLC at 10-5 Pa 70 650 400

DLC at 2x10--1 Pa 43 450 100

Ti.10C.90 25 290 25

Ti.25C.75 27 350 25

Ti.30C.70 29 370 100

Ti.50C.50 20 290 100

Ti.70C.30 14 230 100

_Ti._90C.10 6 150 50

oL-Ti 4 140 50

AISI 440C stainless 7--8 220 3x106_

stee substrate __/_//_/S_;.:_;_SSY_;_
_,,.. ......., ............., ,, 7/: __XS:.Y_/,,', ;/_ Z :"/A/_/F

"20 rain, 200 mJ, 20 Hz

5 rain, 200 mJ, 20 Hz

2.5 min, 40 Hz, 100 W

2.5 min, 11 Hz, 100 W

10 min, 9 Hz, 100 W

10 min, 4 Hz, 1O0 W

10 min, 2 Hz, 100 W

10 min, 1 Hz, 50 W

5 min, 100 W

(a)
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Figure 1 .--Schematic diagram of a-DLC and H-DLC coatings. (a) Functionally graded

a-DLC/Ti-TixCy-DLC multilayer coating showing gradation of composition and properties

across coating thickness. (b) H-DLC coatings deposited on a-DLCfTi-TixCy-DLC.

NASA/TM-- 1999-209076 7



.=
_=

2000

1600

1200

80O

400

0
1000 1200 1400 1600 1800

Raman shift, cm-1

(n

_=

12 000 --
(b)

10 000

8 000

6 000

4 000

2 000

0
1000 1200 1400 1600 1800

Raman shift, cm-1
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Figure 3.--Sliding and fretting wear apparatuses. (a) Pin- or ball-on-disk tribometer

in vacuum chamber. (b) Fretting wear apparatus.
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Figure 7.--Fretting wear scars (a) on Ti-6AI-4V pin

and (b) on Ti-6AI-4V fiat in humid air at 50% relative

humidity.
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Figure 8.--Fretting wear scars (a) on Ti-6AI-4V pin and
(b) on a-DLC/Ti-TixCy-DLC-coated AISI 440C disk in
humid air at 50% relative humidity.
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